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Complex real-world phenomena across a wide range of scales, from aviation and Internet traffic to
signal propagation in electronic and gene regulatory circuits, can be efficiently described through
dynamic network models. In many such systems, the spectrum of the underlying graph Laplacian plays a
key role in controlling the matter or information flow. Spectral graph theory has traditionally prioritized
analyzing unweighted networks with specified adjacency properties. Here, we introduce a complementary
framework, providing a mathematically rigorous weighted graph construction that exactly realizes any
desired spectrum. We illustrate the broad applicability of this approach by showing how designer spectra
can be used to control the dynamics of various archetypal physical systems. Specifically, we demonstrate
that a strategically placed gap induces generalized chimera states in Kuramoto-type oscillator networks,
tunes or suppresses pattern formation in a generic Swift-Hohenberg model, and leads to persistent
localization in a discrete Gross-Pitaevskii quantum network. Our approach can be generalized to design
continuous band gaps through periodic extensions of finite networks.
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I. INTRODUCTION

Spectral band gaps control the behavior of physical
systems in areas as diverse as topological insulators [1,2],
phononic crystals [3], superconductors [4], acoustic
metamaterials [5], and active matter [6]. In addition to
ubiquitous physical network models [7–10] ranging from
aviation [11] to electronics [12], there is also considerable
interest in virtual or computational networks [13] with
fewer physical constraints, such as those recently used to
create spiral-wave chimeras in coupled chemical oscil-
lators [14]. Often, dynamics in such systems depend on
the graph Laplacian [15,16] and in particular on its
spectrum of eigenvalues. Traditionally studied in periodic
lattice graph models [3,5,6,17] and more recently also in
hyperuniform systems [18], the targeted design of spectra

of any desired shape remains a major challenge in modern
materials science [5,19]. Recent breakthroughs in 3Dprinting
[20–23] and lithography [24]make it possible now to produce
and explore network structures that go beyond the tradition-
ally considered periodic lattice geometries.
Building on such experimental and theoretical progress,

we present here a mathematically rigorous solution to the
longstanding question of how any desired spectrum can be
realized exactly on a suitably designed positively weighted
network. Physical motivations necessitate variable edge
weights: couplings in realistic networks, whether stiffnesses
in spring systems or friendships in social networks, are not
identical, and the common assumption of uniform weights
is usually just a convenient simplification. Our construction
of networks with specified eigenvalues allows us to place
arbitrary gaps in the spectrum of the network Laplacian
L ¼ D − A, where D and A are the weighted degree and
adjacency matrices, respectively. These gaps, finite analogs
to band gaps in continuous systems, enable precise control
over the dynamics in a wide range of graph-based physical
systems. To follow the analogy, wewill name an eigenvalue-
free region in our finite networks that is comparable to the
range of eigenvalues a discrete band gap (DBG). In a strict
sense, band gaps can only exist in an extended system with
continuous energy bands, and sowe also show how to create
continuous band gaps by tiling our DBG construction
periodically (Sec.V).Designing a suitablyweighted network
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topology in this way presents an alternative to control
procedures based on adjusting model parameters or initial
conditions on a given network [25]. The spectral approach
towards functional control of network dynamics proposed
here can, e.g., be directly implemented with recently devel-
oped computer-coupled oscillator setups [14] and may find
future applications in networked optical lattices [26–29] and
superconducting waveguide resonators [30].
After motivating of the general problem from a broader

physics perspective (Sec. II), wewill summarize and explain
the main mathematical result (Sec. III). Subsequently, we
focus on demonstrating its broad applicability explicitly for
classical and quantum systems, by showing how suitably
placed DBGs can induce chimera states [31,32] in oscillator
networks, control structural growth in pattern formation
models, and facilitate state localization in quantumnetworks
(Sec. IV). In parallel, we illustrate how our exact spectral
construction can be combinedwith sparsification algorithms
[33,34] to yield simplified networks preserving DBGs. This
approach complements the more traditional procedure of
constructing graph ensembles with predefined statistical
adjacency characteristics [35–38]. Finally, we discuss peri-
odic extensions of finite networks as a systematic procedure
for designing continuous band gaps (Sec. V).

II. GRAPH LAPLACIANS

Aweighted simple graphG is defined by its vertex set V,
edge set E containing unordered pairs of distinct vertices
ði; jÞ, and corresponding edge weights wij. We consider
the case with real, non-negative weights wij ≥ 0 and set
wij ¼ 0 if there is no edge between i and j. The Laplacian
of G is the matrix whose off-diagonal elements are the
negatives of the edge weights and whose diagonal elements
are the weighted vertex degrees. That is, Lij ¼ −wij for
i ≠ j and Ljj ¼

P
i≠j wij.

The Laplacian matrix occurs naturally in a wide range of
physical systems. Up to a sign, it is the discrete analog of
the continuous Laplacian: where ∇2 appears in continuous
models, −L typically appears in the discrete version of
the model. For example, the ubiquitous nearest-neighbor
finite difference approximation to ∇2 arises as the graph
Laplacian of a square lattice [39].
The simplest physical examples of network Laplacians

come from spring systems and discrete random walks.
If a set of identical masses moving in one dimension are
coupled by springs with stiffness wij between masses i
and j, the force on mass i is exactly −

P
j Lijxj ¼P

j wijðxj − xiÞ. Here, xi is the coordinate of the ith mass.
The mechanics then decouple into n oscillation modes
corresponding to the eigenvectors of L, with the eigenval-
ues as squared frequencies.
Similarly, if a particle follows a random walk on a

network, traveling from node j to node i with rate wij

(so the probability flow from j to i is the probability pj

of being in state j times the rate), then the probability
distribution evolves in time according to

dpi

dt
¼ −

X
j≠i

wjipi þ
X
j≠i

wijpj ¼ −
X
j

Lijpj:

The solution again comes from the eigendecomposition of
L: the eigenvalues determine the diffusion rate and the rate
of decay to the stationary distribution.
It is natural, then, to ask whether we can control these

eigenvalues. By designing the network appropriately, what
spectra can we construct? There are two clear constraints.
First, the rows and columns of L sum to zero, implying that
1, the vector of all ones, is an eigenvector with eigenvalue
zero. This corresponds to the stationary distribution for the
random walk and rigid translation for the spring network.
Moreover, the remaining eigenvalues must be non-negative
by the Gershgorin circle theorem [40]. We will see in the
next section that these are the only two restrictions for
weighted networks.

III. NETWORK CONSTRUCTION
AND SPARSIFICATION

The problem of recovering a network from its eigenval-
ues has been studied extensively, both from an algorithmic
[41–43] and mathematical [44,45] perspective. However,
with a few limited exceptions [45], most prior work has
focused only on unweighted networks [46], where there are
a finite number of graphs on n vertices and thus only a finite
number of possible spectra. A weighted graph with no
weight constraints can be constructed to have any desired
set of eigenvalues and eigenvectors [47], but demanding
positive weights makes the construction more challenging.
Previous research [47] has shown how to control the largest
and smallest nonzero eigenvalues with some uncertainty.
Here, we give an exact spectral construction.

A. Spectral graph construction

Our main result is that, given a set fλig of desired
eigenvalues ordered so λ1 ≥ … ≥ λn−1 ≥ λn ¼ 0, there is a
weighted graph G on n vertices with non-negative edge
weights whose Laplacian L has spectrum λ1;…; λn−1, 0.
We show this by explicitly constructing such a network.
While for arbitrary spectra our construction may be one
of multiple possible solutions for G, in some cases the
underlying unweighted topology is necessarily a complete
graph, as discussed below.
The Laplacian, which determines the graph, can be

reconstructed from its eigenvalues and eigenvectors with
the eigenvalue decomposition; we therefore need to find a
set of eigenvectors that together with fλig give a graph
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Laplacian. In fact, the same set of eigenvectors vðkÞ,
k ¼ 1;…; n − 1, given by

vðkÞi ¼

8>><
>>:

1ffiffiffiffiffiffiffiffiffiffiffi
kðkþ1Þ

p i < kþ 1

− kffiffiffiffiffiffiffiffiffiffiffi
kðkþ1Þ

p i ¼ kþ 1

0 i > kþ 1

ð1Þ

suffices for any spectrum. These eigenvectors are strongly
localized: for large k, only component kþ 1 has a value far
from zero. The inverse participation ratio (four-norm)
kvðkÞk44 ¼ 1–2k−1 þOðk−2Þ indicates near-perfect locali-
zation kvðkÞk44 → 1 for almost all k, itself a desirable
phenomenon [16,48] which we will exploit later in the
context of pattern formation. As the vðkÞ are mutually
orthonormal and orthogonal to the vector of all ones, the
matrix L ¼ P

n−1
k¼1 λkv

ðkÞvðkÞ⊤ has the desired spectrum with
ð1= ffiffiffi

n
p Þ1 as the final eigenvector for k ¼ n with eigenvalue

zero. Constructing the Laplacian from the eigenvalue
decomposition in this way guarantees that L is symmetric.
By explicitly computing the sum over k for i < j, we find

Lij ¼
Xn−1
k¼1

λkv
ðkÞ
i vðkÞj ≤ −

λj−1
n

;

that is, that the off-diagonal elements of L are all non-
positive (Appendix B); L therefore corresponds to a graph
with non-negative weight −Lij between vertices i and j. If
all of the eigenvalues are nonzero, all of the off-diagonal
elements of L will be nonzero and the resulting graph will
be complete.
Some spectra can only be realized on complete graphs.

A graph G with approximately constant spectrum must
be complete: if L has nonzero eigenvalues λk ¼ λþ ϵk for
k < n and λn ¼ 0, then

λI − L ¼ λ

n
11⊤ −

Xn−1
k¼1

ϵkvðkÞvðkÞ⊤:

The off-diagonal elements of λI − L, which equal the
original edge weights of G, are therefore ðλ=nÞ þOðϵÞ.
For small ϵk, every edge has nonzero weight; if ϵ ¼ 0, we
have that the complete graph with equal weights is the only
network with a fully degenerate spectrum. More com-
monly, the network that realizes a spectrum is not unique.
Suppose, for instance that there are k zero eigenvalues. The
graph must have k disconnected components. The set of
eigenvalues of each component considered individually
will be a subset of the eigenvalues of the entire graph: the
components’ eigenvalues form a partition of the full
spectrum. Any partition where each group contains one
zero can be realized by constructing the components as
described above. If there is more than one nonzero

eigenvalue and k > 1, there will be multiple partitions that
give nonisomorphic graphs; typically, there will be an
enormous number of isospectral disconnected graphs.
For connected graphs, with only one zero eigenvalue,

our construction also shows that the spectrum of any
noncomplete weighted graph cannot uniquely specify that
graph, in line with older results on, e.g., the spectra of trees
[44]. Given any connected graph with at least one missing
edge, our design can match the spectrum with a complete
graph that cannot be isomorphic to the given one.
This construction allows us to create networks with

precisely specified gaps. For instance, choosing λ1 ¼
λ2 ¼ … ¼ λn=2−1 and λn=2 ¼ λðn=2Þþ1 ¼ … ¼ λn−1 leads
to a graph with edge weights −Lij ¼ λn−1=n if i > n=2
or j > n=2 and −Lij ¼ ð2λ1 − λn−1Þ=n otherwise
(Appendix A); that is, there are two groups of vertices,
one strongly connected within itself and one weakly
connected to everything. Adding a small amount of noise
to each eigenvalue then lifts the eigenvalue degeneracy
while preserving the connectivity structure and retaining a
gap [Figs. 1(b) and 1(c)].

B. Sparsification

Since complete graphs can be difficult to realize physi-
cally, we explore the effect of the sparsification-by-
resistances algorithm developed by Spielman and
Srivastava [33]. Given an accuracy parameter ϵ, this
sparsification creates a network withO(ðn lognÞ=ϵ2) edges
whose eigenvalues match the eigenvalues of the original
network to within a multiplicative factor 1� ϵ with high
probability. Sparsification by resistances aims to preserve
the entire spectrum, not just a gap; future sparsification
algorithms directly constructed to preserve a gap could
therefore improve on its efficiency. In other applications,
the networks of interest are virtual ones [14] and sparsi-
fication may not be necessary.
Rather than removing edges from the initial graph, the

sparsification algorithm constructs a new graph starting
from disconnected vertices. Specifically, we first compute
the effective resistance Rij between every pair of vertices in
the initial graph, treating the edge weights as conductivities.
We then sample q ¼ ðn lognÞ=ϵ2 edges at random, with the
probability pij of sampling edge ði; jÞ proportional to
wijRij. Each edge we sample is added to the sparsified
graph with weight wij=ðqpijÞ; if an edge is added multiple
times, the weights are summed. Clearly, the new graph will
have at most q edges. We leave the argument that this
preserves the spectrum to Ref. [33].
We can use the 1� ϵ multiplicative error bound to

estimate the size of a discrete band gap after sparsification.
Suppose we start from a network with eigenvalues λ1, λ2,
and 0, with some multiplicities, where λ1 > λ2. The
eigenvalues fμig of the sparsified graph corresponding
to λ1 should be no smaller than μi ≥ ð1 − ϵÞλ1, while the
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eigenvalues fνig corresponding to λ2 should be no larger
than νi ≤ ð1þ ϵÞλ2. The sparsified graph should therefore
have a gap Δ ¼ miniμi −maxiνi of size

Δ ≥
�
1 −

λ1 þ λ2
λ1 − λ2

ϵ

�
ðλ1 − λ2Þ:

That is, the gap contracts by a factor at most
1 − ½ðλ1 þ λ2Þ=ðλ1 − λ2Þ�ϵ. For the parameters used in
Fig. 1(d), this is ð1 − 5

3
ϵÞ.

IV. APPLICATIONS

We now demonstrate the practical potential of DBGs with
three generic network models. In each case, we compare the
dynamics on a complete DBG network [Fig. 1(b), left] both
to a sparsified approximate DBG network [Fig. 1(b), top]
and to a random connected network [Fig. 1(b), bottom]
constructed to have the same weighted vertex degrees as the

DBG network (Appendix C). The gap is approximately
preserved in the sparsified network and vanishes entirely in
the random graph [Figs. 1(c) and 1(d)]. Matching the degrees
in the random graph to the DBG network ensures that any
differences in dynamics are not due to differences in coarse
features like the average connectivity, but rather are likely
caused by the spectral differences. Often, the behavior of
optimized networks is sensitive to small perturbations [49];
here, behaviors preserved in the sparsified graph are robust
to significant changes.
Laplacian matrices occur in a wide range of physical

systems, in many of which, like the spring networks and
random walks mentioned earlier, the effect of the spectrum
and band gaps is known. In other models, gaps can have
significant but less-well-understood effects. We have chosen
three nonlinear models to investigate in more detail in order
to illustrate the diversity of potential applications for this
work. These three systems are each generic, widely studied,
and show distinct nontrivial effects of gapped spectra.
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FIG. 1. Designing networks from spectra. (a) Schematic of DBG network construction. Given a spectrum of eigenvalues distributed in
two (or more) groups, we build a graph with non-negative edge weights that realizes this spectrum exactly (1). Sparsification of this
complete DBG network with the Spielman-Srivastava [33] algorithm (2) yields a new network with wider eigenvalue distributions and a
smaller gap (3). (b) Example graphs used in applications below: Starting from a DBG graph on 200 vertices with 100 eigenvalues set to
independent and identically distributed (IID) N ð5; 0.25Þ and 99 set to IID N ð20; 0.25Þ (left), sparsification with ϵ ¼ 0.5 creates a new
graph (top) with the number of edges reduced from 19900 to 3758. As a control, we also compare to a gapless random graph (bottom)
with 362 edges and the same weighted vertex degrees as the original DBG graph (Appendix C). (c) The eigenvalues for the graphs in (b).
The mode on the complete DBG network with the kth largest nonzero eigenvalue is supported on the first kþ 1 vertices, counted
counterclockwise from the top red vertex, and highly localized on vertex kþ 1, which is colored to match in (b). Gray lines indicate the
borders of the unstable region for the Swift-Hohenberg model with the parameters used in Fig. 3. (d) Sparsified networks retain a
significant gap even for relatively large ϵ. Each point shows the mean number of edges and gap size at fixed ϵ between 1 (left) and 0.01
(right), starting from a graph on 200 vertices designed to have 100× eigenvalue 5 and 99× eigenvalue 20. The solid curve shows the
worst-case gap estimate, reduction by a factor of 1 − 5

3
ϵ. Sample size is 1000 for ϵ ≥ 0.1 and 300 for ϵ < 0.1. Error bars are�1 standard

deviation; horizontal error bars are smaller than the marker size.
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First, we will discuss the Kuramoto model of coupled
phase oscillators, typically studied as a model for synchro-
nization. Here, the Laplacian straightforwardly determines
the linear behavior near synchronization and has a complex
relationship with the nonlinear dynamics. Next, we will
present a discretized Swift-Hohenberg type pattern forming
system, where controlling the Laplacian spectrum directly
controls the steady states of a nonlinear equation. Finally,
to diversify our range of physical applications, we will
integrate our networks in a quantum mechanical model
based on the Gross-Pitaevskii equation. Band gaps in such
energy-conserving systems can inhibit transfer of energy
between different modes, and we will see how this can tune
diffusion of the wave function.
Simulations were performed using a third- or fourth-

order Adams-Bashforth linear multistep method with a
time step Δt ¼ 10−4. All simulations were written in C++
using ARMADILLO [50].

A. Kuramoto oscillators

Our first application is the Kuramoto model of coupled
oscillators [51,52]. Introduced by Kuramoto in 1975, it
has since been studied extensively as a generic setting for
interesting synchronization behavior. One of the more
surprising discoveries was the existence of chimera
states [53], where sets of identical oscillators divide into
coexisting synchronized and desynchronized clusters.
Commonly considered in networks with identically
coupled oscillators, chimeras or chimeralike states can also
appear with asymmetric couplings [54]. So far, relatively
little attention has been paid to the effect of the spectrum
of the coupling network, or, in particular, to what effect a
gapped spectrum should have.
Recent experiments coupling Belousov-Zhabotinsky

reactions via a computer-controlled projector have shown
the emergence of chimeras [14]; we will show this can
be achieved in the weak sense of Ref. [55] using our
construction with an appropriately gapped spectrum.
Here, phases θi on the vertices evolve with a natural
frequency ω and a nonlinear coupling defined by the
network adjacency matrix:

dθi
dt

¼ ωþ
Xn
j¼1

Aij sinðθj − θi þ αÞ:

On a connected graph with α ¼ 0, there is always a stable
attractor θi ¼ θ0 þ ωt. The rate of convergence to this
state within its basin of attraction is controlled by the
eigenvalues of the Laplacian L [15].
Both the complete and sparsified exemplar graphs in

Fig. 1 have no eigenvalues near zero, so they synchronize
much faster than the random graph [Figs. 2(a)–2(c)]. The
large gap between the two large clusters of eigenvalues
divides the modes into two groups, one synchronizing

faster than the other [Figs. 2(d)–2(e)]; moreover, on the
complete graph, the localization of the eigenvectors causes
staggered synchronization of vertices [Fig. 2(a)].
If α is sufficiently large, the oscillators no longer

synchronize at a single frequency. On DBG networks,
global coherence gives way to weak chimera states [55,57]
where vertices synchronize into two clusters with distinct
frequencies [Figs. 2(g)–2(i), Video 1 in Supplemental
Material [56]]. For the exactly gapped network with edges
of weight w1 ¼ λn−1=nþ ðλ1 − λn−1Þ=ðmþ 1Þ or w2 ¼
λn−1=n described at the end of Sec. III A, where m ¼
ðn=2Þ − 1 is the multiplicity of the eigenvalue λ1, there is
a steady state with θi ¼ θ1 for i ≤ mþ 1 and θi ¼ θn for
i > mþ 1. In this state,

d
dt

ðθ1 − θnÞ ¼ mðw1 − w2Þ sinðαÞ
− 2ðmþ 1Þw2 sinðθ1 − θnÞ cosðαÞ; ð2Þ

after some simplification with trigonometric identities.
The two phases θ1 and θn can synchronize only if there
is a solution to

sinðθ1 − θnÞ ¼
m

2ðmþ 1Þ
�
w1

w2

− 1

�
tanðαÞ:

This synchronization is possible if α is small enough that
the right-hand side is less than one. If the two groups do not
synchronize, and 2ðmþ 1Þw2 ¼ λ2 is not too large, the
second rhs term in Eq. (2) will average to nearly zero giving
an approximate mean frequency difference

�
d
dt

ðθ1 − θnÞ
�
≈mðw1 − w2Þ sinðαÞ;

which is equal to −½m=ðmþ 1Þ�ðλ1 − λn−1Þ sinðαÞ in terms
of the eigenvalues. More general cluster synchronization
[58,59] could be achieved by adjusting the number and
size of the gaps. In contrast, the random graph becomes
thoroughly incoherent at comparable values of α [Figs. 2(i)
and 2(l)]. The coherence can be quantified by the order
parameter r ¼ jPj e

iθj j, which oscillates for the complete
and sparsified networks but is near zero for the random graph
[Figs. 2(j) and 2(l)], indicating complete disorder.
The result of our construction with a DBG is similar to a

standard two-cluster model where chimeras appear [31].
In this model, vertices are divided into two groups of size
n=2 with edge weight −Lij ¼ μ if i and j are in the same
cluster and −Lij ¼ ν < μ if i and j are in different clusters.
In the limit n → ∞, this system exhibits stable chimera
states with one cluster synchronized and the other cluster
incoherent. However, for our DBG network, we relax the
assumptions that intracluster couplings μ are identical
and stronger than intercluster couplings ν. Perhaps sur-
prisingly, oscillators on the weakly connected side are
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consistently closer to synchronizing with each other than
with strongly connected oscillators, even though the
coupling among weakly connected vertices is smaller
than the coupling between weakly and strongly connected
vertices. Ours are weak chimeras, where we do not
require one cluster to be incoherent, but they exist stably
on small networks.
The effect appears more related to the gap than to the

degeneracy of the eigenvalues. The densely connected
side of the sparsified graph is mostly synchronized, even
though the eigenvalues above the gap are no longer
approximately degenerate. However, the spectrum is not
the only determinant of behavior in the Kuramoto model,
and potentially there may exist isospectral graphs with
qualitatively different dynamics. Compare, for instance,
our complete construction with the classic simplest

example of a gapped network, a periodic chain with
alternating high- and low-weight edges. This does not
synchronize in clusters so simply. In fact, on such a graph
there are no solutions with two clusters exactly synchron-
ized internally but having distinct long-time average
frequencies. Our gapped complete networks can syn-
chronize in distinct clusters because the edge weights
are distinct, w1 ≠ w2. Were this not the case, then when the
cluster phases coincide with θ1 ¼ θn, as they must at some
point if their frequencies differ, the rhs of Eq. (2) would be
zero and the phases would lock. An equivalent argument
applies to the alternating chain: all vertices have the same
weighted degree, equal to the high weight plus the low
weight, which ultimately inhibits clustering.
Greater numbers of clusters can also be considered

within this framework. On a network where, for a vertex
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i in cluster β, the total weight of edges to vertices in cluster
γ depends only on β and γ, that is

X
j∈γ

Aij ¼ Aβγ;

one could work with a reduced Kuramoto model for
internally synchronized cluster phases fθβg reading

dθβ
dt

¼ ωþ
X
γ

Aβγ sinðθγ − θβ þ αÞ:

In this case, if the cluster couplings Aβγ vary sufficiently
across clusters then there will exist exact cluster-synchron-
ized solutions. Our DBG networks deviate slightly from
these conditions only because of the noise added to the
eigenvalues to lift degeneracies. These classes of systems
could be realized experimentally in any Kuramoto-type
system where the connectivity is controlled. For example,
our networks could be input directly into the chemical
oscillator system of Ref. [14] where the authors found
spiral-wave chimeras.

B. Swift-Hohenberg pattern formation

As the second application, we study Swift-Hohenberg
pattern formation dynamics on a network [60,61]. The
Swift-Hohenberg equation [60] is a common, generic
model of pattern formation, intended to model the selection
of patterns with a well-defined scale. It has been applied in
areas well beyond the thermally driven convection for
which it was developed, ranging from wrinkling of elastic
shells [62] to lasers [63]. Though originally defined in a
continuous setting, the model can be easily extended to
discrete network systems using the analogy between −∇2

and L [61].
In contexts with a continuous, gapless spectrum of

eigenvalues, the standard Swift-Hohenberg parameters

define the length scales of the system. With a gap, however,
there is an additional interaction between the length scales
of pattern formation and the location of the gap. Just as
acoustic band gaps can inhibit transmission of sound of
particular frequencies [3], gaps in this system should inhibit
pattern formation at the corresponding scales.
Consider a scalar field ui on the vertices obeying

dui
dt

¼ −D1

Xn
j¼1

Lijuj −D2

Xn
j;k¼1

LijLjkuk − αui − u3i : ð3Þ

This is the discrete network equivalent to the usual
continuous Swift-Hohenberg model ∂u=∂t ¼ D1∇2u −
D2∇4u − αu − u3 [60,61]; the extra minus sign in front
of the D1 term in Eq. (3) arises from the adopted standard
sign convention for the discrete graph Laplacian L
(Sec. II). The fixed point ui ¼ 0 of Eq. (3), which exists
for any values of the parameters D1, D2, and α, is linearly
stable to perturbations in a Laplacian eigenmode with
eigenvalue λ if the growth rate σ ≡ −α −D1λ −D2λ

2 < 0.
With α andD2 positive, σ is negative for small and large λ,
but choosing D1 < −2

ffiffiffiffiffiffiffiffiffi
αD2

p
creates a range of unstable

λ in between. This can drive pattern formation that is
eventually stabilized by the nonlinearity. The patterns can
only form, however, if L has eigenvalues in the unstable
range. Controlling the spectrum of L therefore allows us to
completely suppress pattern formation in arbitrarily large
systems by placing a gap around the unstable region
[Figs. 1(c), 3(a), Video 2 in Supplemental Material [56]].
If we sparsify the network with sufficiently small ϵ, the
gap will be preserved and again no patterns will form.
Eventually, though, increased sparsification will push
some eigenvectors into the edges of the unstable region
and bring back partial pattern formation [Fig. 3(b)], which
becomes fully developed in the random graph [Fig. 3(c)].
The maximum ϵ for which patterns will be fully sup-
pressed for given parameter settings can be predicted
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FIG. 3. Generic suppression of pattern formation with a designed discrete band gap. (a) Pattern formation in the Swift-Hohenberg
system is completely suppressed by constructing a gap around the range of unstable eigenvalues [Fig. 1(c)]. (b) On a sparsified graph
that has a few eigenvalues just within the unstable region, some modes settle at small nonzero values. (c) On the random graph many
more eigenvalues are well within the unstable region and the corresponding modes settle at larger amplitudes. The inset graphs show the
final steady state on each graph. All simulations used identical initial conditions ui ∼N ð0; 1Þ and parameters α ¼ 90, D1 ¼ −20,
D2 ¼ 1. See Video 2 in Supplemental Material [56] for animation.
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straightforwardly from the expected changes in the
eigenvalues, in a similar fashion to the post-sparsification
gap size in Fig. 1(d).
Pattern suppression relies only on controlling the

available eigenvalues. Our construction, however, has
the additional desirable [16,48] feature that the eigenvec-
tors are highly localized. This allows us to control not
just whether patterns form, but also which patterns appear.
By choosing the eigenvalues of modes corresponding to
a set S of vertices to lie inside the unstable range, while
leaving all other eigenvalues outside of that range, we
can selectively activate only the set S. While this only
guarantees that the linear part of Eq. (3) selects the desired
pattern, because the local nonlinearity only weakly cou-
ples different localized modes, the pattern typically
survives in the nonlinear regime (Fig. 4, Video 3 in
Supplemental Material [56]).
Depending on initial conditions, vertices corresponding

to eigenvalues above the unstable range may have small
activations, since the activated modes have small but
nonzero amplitudes there [Fig. 4(e)]. With random initial
conditions, however, positive and negative contributions
from activated modes with opposite signs often nearly
cancel yielding uniform patterns (Video 3 in Supplemental
Material [56], bottom). Uniformity can also be achieved by
having no eigenvalues above the unstable range or suffi-
ciently many high eigenvalues that the amplitudes of the
activated modes on those vertices is nearly zero.
Alternatively, this phenomenon could be used to design
more complex patterns with multiple levels of activation.
The conclusion that a band gap can suppress pattern

formation does not depend on the discreteness of our
system. Experimentally, then, it would be worth investigat-
ing both ways to realize a network Swift-Hohenberg model
where our networks could be used directly and continuous
Swift-Hohenberg systems where a band gap could be
introduced.

C. Gross-Pitaevskii localization

Having discussed two classical applications to non-
conservative systems, we now show how DBGs can
control quantum dynamics with conserved energy. In
experiments with Bose-Einstein condensates (BECs) in
optical lattices [26] researchers often approximate the
continuous quantum state with a discrete wave function
in the Bose-Hubbard model [64]. Similar Hamiltonians
also combining Laplacian-like coupling with local
potentials arise for the recently realized fermionic
lattice gases [28,29] and connected superconducting
waveguides [30].
Assuming the coupling and potentials can be suffi-

ciently well controlled, one can create a network version
of the Gross-Pitaevskii model of BEC wave functions.
Just as in the Swift-Hohenberg example, we take the
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FIG. 4. Controlling pattern formation with a designed discrete
band gap (Video 3 in Supplemental Material [56]). (a) Instead of
placing a gap in the spectrum around the unstable pattern-forming
range, as in Fig. 3, we deliberately place particular eigenvalues in
the middle of that range corresponding to eigenvectors localized
on a desired pattern. (b) From random initial conditions, the
system settles into a state where only the chosen modes have non-
negligible amplitudes. (c)–(e) Time series of pattern evolution on
a designed network, with vertices colored according to the
stability of the mode localized there as in (a). The size of the
vertices indicates juj. (c) The encoded pattern is not obvious from
either the designed network or the random initial conditions.
(d) By time t ¼ 0.07 the stable modes have nearly all vanished.
(e) The steady state reveals the eigenmode-designed pattern.
Because the modes are highly localized, selecting a set of modes
to activate is approximately equivalent to selecting a set of
vertices to activate. Thus, we can encode an arbitrary pattern as
the steady state. Depending on initial conditions, the system may
settle into other stable states with slight variations in the vertex
activations; the picture typically shows up at least as clearly as it
does here and often is more uniform. The parameters α ¼ 90,
D1 ¼ −20, and D2 ¼ 1 were identical to those in Fig. 3; the
tuning parameters to control pattern formation are only the
network edge weights. See Video 3 in Supplemental Material
[56] for animation and other initial conditions.
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Gross-Pitaevskii equation for a complex wave function ψ
and replace the continuous Laplacian ∇2 with its discrete
analog −L:

i
dψ j

dt
¼

Xn
k¼1

Ljkψk þ gjψ jj2ψ j: ð4Þ

This discrete nonlinear Schrödinger equation [65,66] can
be written iðdψ i=dtÞ ¼ ∂E=∂ψ�

i , where the energy E is
the sum of the kinetic energy T ¼ P

i;j ψ
�
i Lijψ j and the

potential energy V ¼ 1
2
g
P

jðψ�
jψ jÞ2. In the special case of

a lattice system, T would include cross-site interaction
energies. The potential energy quantifies the localization
of ψ : with g > 0, it is large when the probability ψ�ψ is
concentrated at a single vertex and small when ψ�ψ is
spread out. Delocalization is limited by the size of the
network, as V ≥ g=ð2nÞ, but can vary widely even on a
finite network. If ψ is initialized at a single vertex j, then
V ¼ g=2, independent of j, while T ¼ Ljj equals the
degree of j.
We find that the interplay of the total energy conserva-

tion constraint in such a model with the kinetic energy gap
inhibits spreading of the wave function on DBG networks.
The effect is reminiscent of Anderson localization [67] and
could appear in similar experimental setups [27,68], though
the mechanism is distinct. Since energy is conserved, the
wave function can delocalize and reduce its potential
energy only by converting it to kinetic energy. The rate
of potential energy loss, set by g, must therefore match the
rate of kinetic energy gain, set by the differences in
eigenvalues among the modes involved. Suppose the wave
function is mostly in a localized mode jwith eigenvalue λj.
Spreading to a higher mode k with λk − λj ≫ g would
increase kinetic energy by more than it would decrease
potential energy, while aweak highermode 0 < λk − λj ≪ g
or a lower mode λk < λj would not increase kinetic energy
by enough, if at all. Both are barred by energy conservation.
The amplitude in mode j can only be reduced if there are
other modes k with λk ∼ λj þ g.
To see this in more detail, suppose we have a wave

function comprising two modes, ψ j ¼ c1v
ð1Þ
j þ c2v

ð2Þ
j , with

initial complex amplitudes c1, c2. Suppose also that
these eigenmodes are localized on two different vertices,
with vð1Þ ≈ ð−1; ϵ; ϵ;…; ϵÞ and vð2Þ ≈ ðϵ;−1; ϵ;…; ϵÞ. The
system energy as a function of c1 and c2 is then

E ¼ λ1jc1j2 þ λ2jc2j2 þ
1

2
g½jc1j4 þ jc2j4 þOðϵÞ�:

If the squared amplitudes change slightly, to jc1j2 − δ and
jc2j2 þ δ, the change in energy to leading order in δ is

ΔE ¼ ½λ2 − λ1 þ gðjc2j2 − jc1j2Þ�δþOðϵÞ:

Conservation of energy requires ΔE ¼ 0, so in order to
transfer a noticeable amplitude δ ≫ ϵ from the first mode to
the second we must have λ2 − λ1 þ gðjc2j2 − jc1j2Þ ≈ 0. In
the cases considered in Fig. 5, where jc1j ≈ 1 and jc2j ≈ 0,
this reduces to λ2 − λ1 ≈ g. Thus, on a network with a
spectral gap, the localization of ψ can depend nontrivially
on the interplay between g and the spectrum.
Initializing ψ at a weakly connected vertex brings out

this interplay as g is varied (Video 4 in Supplemental
Material [56]). The initial state, with high potential energy
and low kinetic energy, is localized on modes with an
eigenvalue below the spectral gap. On the sparsified
network, a low value of g makes nearby modes below
the gap accessible for delocalization, causing the wave
function to spread [Fig. 5(a)]. However, increasing g pushes
the region where transfer is possible inside the spectral gap,
inhibiting the spread of the wave function on the sparsified
network [Fig. 5(b)]. A further increase of g once again
enables delocalization as the modes above the gap become
accessible for energy transfer [Fig. 5(c)]. In contrast, the
dense spectrum of the random graph means delocalization
occurs in all three instances (Fig. 5). Interestingly, the
complete DBG network appears to remain localized for
all values of g in our simulations (Fig. 5); this is likely due
to the strong localization and near-zero overlap of the
eigenmodes.
Experimentally, this could be realized either with BECs

in appropriately tuned optical potentials or as a physical
network of waveguides. Building the large complete
networks we introduced is beyond current experimental
techniques but may be possible with future advancements.
For the short term, we will show in the next section how
extending smaller, low-connectivity networks periodically
can lead to more practical networks with approximately the
same spectral properties.
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FIG. 5. Localization on a DBG quantum network (Video 4 in
Supplemental Material [56]). (a)–(c), When the wave function in
the Gross-Pitaevskii model of Eq. (4) is initialized at a weakly
connected vertex with low kinetic energy, localization or delo-
calization (indicated by high or low potential energy, respec-
tively) is controlled by the interplay between the graph spectrum
and the rate of potential energy loss g. The random graph (purple)
always delocalizes, due to its dense spectrum. However, while the
sparsified graph (yellow) can delocalize for low g (a) and high g
(c), again due to available eigenmodes, intermediate g (b) places
the range of allowed modes inside the spectral gap, preventing
delocalization. The complete graph (blue) always inhibits spread-
ing due to the extreme localization of its eigenvectors.

FUNCTIONAL CONTROL OF NETWORK DYNAMICS USING … PHYS. REV. X 8, 041043 (2018)

041043-9



V. BAND STRUCTURE IN PERIODIC NETWORKS

High connectivity can make it difficult to build exper-
imental versions of complex networks. This motivated our
study of spectral sparsification, as the sparsified graphs
should be easier to realize in an experiment. An alternative
approach to making practically usable networks is to create
a periodic crystal where we control the behavior of the unit
cell. Keeping the unit cell small will reduce the connectivity
and simplify fabrication, while the periodic structure will
enable building on a larger scale. The key question is then,
can the spectrum of the full system can be controlled by
tuning only the unit cell? In what follows, we show that
it can.
We can construct infinite periodic networks in a standard

way from any base network G by tiling periodically and
rewiring edges [Figs. 6(a) and 6(d)]. Starting from the
original vertex set fjg for 1 ≤ j ≤ n and edge weights
−Ljk, we make an infinite string G∞ of copies of G with
vertices indexed by j, the label in G, and c ∈ Z, the unit
cell. This will give a new, infinite Laplacian L∞. For the
edges that will not be rewired, we set L∞

jc;kc ¼ Ljk for all c.
Doing this for all edges would leave the copies of G
disconnected. To connect them, we choose a subset of
edges fðj; kÞg and rewire them to cross between unit cells;
e.g., if ðj; kÞ is an edge to be rewired to have k in a unit cell

to the left of j we can set L∞
jc;kðc−1Þ ¼ Ljk for all c and

symmetrically set L∞
kðc−1Þ;jc ¼ Lkj. The remainder of the

entries of L∞ are set to zero.
Since L∞ is periodic, Bloch’s theorem allows us to write

the eigenvectors as

U∞
jcðqÞ ¼ eiqcŨjðqÞ;

where q is a wave number in the first Brillouin zone
−π < q < π. The Ũ then satisfy

λðqÞeiqcŨjðqÞ ¼
X
k;d

L∞
jc;kde

iqdŨkðqÞ;

which reduces to a new eigenvalue equation for a matrix of
size n:

λðqÞŨðqÞ ¼ L̃ðqÞŨðqÞ;
where the matrix elements of L̃ðqÞ are the same as those of
L for edges within a single unit cell and differ by a factor
eiqðc−dÞ for edges that cross between unit cells c and d.
Using these transformations, which are standard in

the study of lattice systems [17], we can find the
continuous spectra of periodic tilings of our designed
networks. Even without any optimization of which edges
to rewire, the spectral characteristics persist in the infinite
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FIG. 6. Designed spectra on a discrete network are preserved when extended periodically in one dimension. (a) We extend a finite
network to an infinite one by rewiring a subset of the edges to cross between adjacent copies of the original network. Here, we take the
network with the spectrum in (b) and rewire the edge between vertices j and k if jk − jj > n=2. This rewires roughly one quarter of the
edges. (b) One unit cell in (a) would have a discrete spectrum with λj ¼ 21 − j. (c) Most of the eigenvalue bands do not change
significantly with q, so the density of states consists of 21 sharp peaks with low- or zero-density regions between. (d) The same
construction as in (a) can be repeated for any spectrum; this is the result for a gapped network. (e) One unit cell in (d) would have a
gapped spectrum, with 10 eigenvalues equal to 20 and 10 equal to 5, in addition to the always-present zero eigenvalue. (f) Again, most of
the eigenvalue bands are roughly constant, even though the eigenvectors do depend strongly on q. The gap in the middle of the spectrum
is nearly perfectly preserved; a small gap remains between the bottom two bands. Note the log scale on both density of states plots.
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system. If we rewire all edges with jj − kj > n=2, for
example a spectrum of equally spaced eigenvalues leads
to a density of states with corresponding equally spaced
large spikes [Figs. 6(a)–6(c)], while a discrete band gap is
almost entirely preserved [Figs. 6(d)–6(f)]. In both cases,
only the bottom few bands vary significantly with q. Note
that because we moved edges incident to the first vertex,
all of the eigenvectors do change and are not localized
for nonzero q.

VI. CONCLUSIONS

Controlling dynamics on a network typically requires
detailed understanding of its spectral properties. Here,
we have reversed the conventional approach by starting
from a desired spectrum and providing a mathematically
rigorous construction of a matching network. This enables
us to induce chimera states, suppress or fine-tune pattern
formation, and control wave-function localization [69]
using suitably designed gapped spectra. We introduce our
three applications only to showcase a few possibilities and
we expect the construction to be useful in many other
contexts. Still, these three already provide opportunities
for experimental realizations, including computer-coupled
chemical oscillators [14], cold atomic systems with pre-
cisely specified optical potentials [26–29,64], or etched
superconducting waveguide resonators [30]. For metama-
terials that can be approximated as spring networks,
designing the Laplacian would determine the transmission
properties and allow selective acoustic damping. Diffusive
transport networks designed with these principles could
have mixing times controlled independently for different
initial conditions. Any of these models can also be naturally
extended to periodic systems, where the spectral properties
are preserved well without any further optimization.
Judicious use of designed networks could aid both discov-
ery, where fine control allows more precise measurement
and understanding, and application, where optimizing trans-
mission spectra [3], transport and localization of electrons
[12,67], or the timing of chemical reactions [70] can have
immediate consequences. Furthermore, chimera networks
promise custom-designed frequency filters and control of
secondary transition and resonance phenomena [71] through
tailored multimodal fluctuation spectra.
Our method, which starts from global properties, com-

plements traditional approaches using small-scale local
rules to build and analyze networks [35,72–74]. In the
future, the above results may also prove useful as a standard
of comparison for other networks. Contrasting the dynam-
ics on an important class of networks with the dynamics
on networks designed to have identical spectra can help
identify the important features of that class. Moreover,
as dynamics are often related to matrices other than the
Laplacian [75], it will be interesting to investigate control
of their spectra for weighted networks as well. Although
our construction works optimally with fully connected

graphs, one can expect that improved sparsification algo-
rithms together with recent progress in 3D printing and
lithography [18,24] may soon lead to physically realizable
networks with arbitrary gaps; since any graph can be
embedded in 3D [76], the framework introduced here lays
a conceptual foundation for the targeted design of complex
nonperiodic metamaterials with desired spectral properties.
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APPENDIX A: EDGE WEIGHTS WITH A GAP

Suppose we have eigenvalues λ1 with multiplicity m
and λn−1 < λ1 with multiplicity n −m − 1. Then, if i < j ≤
mþ 1,

Lij ¼ −
λ1
j
þ
Xm
k¼j

λ1
kðkþ 1Þ þ

Xn−1
k¼mþ1

λn−1
kðkþ 1Þ

¼ −
λ1

mþ 1
þ λn−1

�
1

mþ 1
−
1

n

�
:

Else, if i < j and j > mþ 1,

Lij ¼ λn−1

�
−
1

j
þ
Xn−1
k¼j

1

kðkþ 1Þ
�
¼ −

λn−1
n

:

There are two types of edges: edges with both end points in
the first mþ 1 vertices have weight λn−1=nþ ðλ1 − λn−1Þ=
ðmþ 1Þ, while other edges have weight λn−1=n.

APPENDIX B: POSITIVITY OF EDGE WEIGHTS

The elements of the designed L above the diagonal, Lij
for i < j, are given by

Lij ¼
Xn−1
k¼1

λku
ðkÞ
i uðkÞj

¼ λj−1u
ðj−1Þ
i uðj−1Þj þ

Xn−1
k¼j

λku
ðkÞ
i uðkÞj

≤ λj−1

�
−
1

j
þ
Xn−1
k¼j

1

kðkþ 1Þ
�

¼ λj−1

�
−
1

j
þ 1

j
−
1

n

�

¼ −
λj−1
n

≤ 0:

FUNCTIONAL CONTROL OF NETWORK DYNAMICS USING … PHYS. REV. X 8, 041043 (2018)

041043-11



From the second to third lines we use the definition of
the eigenvectors in Eq. (1); the sum

P
n−1
k¼j 1=½kðkþ 1Þ� ¼

ð1=jÞ − ð1=nÞ in the third line can be computed as a
telescoping sum of partial fractions. L is symmetric, so
the elements below the diagonal must also be nonpositive.
This proves that the edge weights of the constructed graph
are non-negative.

APPENDIX C: RANDOM
MATCHED-DEGREE GRAPHS

Given a weighted graph G, we can construct a random
simple graph G̃ with the same vertex degrees as G in a way
analogous to known methods for sampling random regular
graphs [77]. Let wðeÞ denote the weight of edge e and dðvÞ
denote the weighted degree of vertex v. Begin with a
disconnected graph with a loop of weight dðvÞ=2 at each
vertex v; this has the same degrees as G but is not simple.
Repeat the following steps until there are no loops:
(1) Pick a loop l ¼ ðu; uÞ and another edge e ¼ ðv; wÞ

at random, with v ≠ u ≠ w.
(2) (a) If wðlÞ > wðeÞ, remove e and add e0 ¼ ðu; vÞ

and e00 ¼ ðu; wÞwith weight wðeÞ. Subtract wðeÞ
from the weight of l.

(b) Else, remove l and add e0 ¼ ðu; vÞ and e00 ¼
ðu; wÞ with weight wðlÞ. Subtract wðlÞ from the
weight of e.

Once there are no more loops, merge all sets of edges
between the same pair of vertices into one edge with the
same total weight. Since the degree of each vertex is
preserved at each step, the final graph has the same degrees
as G. In the examples considered here, the algorithm
terminates quickly.
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