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Coherent, large-scale dynamics in many nonequilibrium physical, biological, or information transport
networks are driven by small-scale local energy input. Here, we introduce and explore an analytically
tractable nonlinear model for compressible active flow networks. In contrast to thermally driven systems,
we find that active friction selects discrete states with a limited number of oscillation modes activated at
distinct fixed amplitudes. Using perturbation theory, we systematically predict the stationary states of noisy
networks and find good agreement with a Bayesian state estimation based on a hidden Markov model
applied to simulated time series data. Our results suggest that the macroscopic response of active network
structures, from actomyosin force networks to cytoplasmic flows, can be dominated by a significantly
reduced number of modes, in contrast to energy equipartition in thermal equilibrium. The model is also well
suited to study topological sound modes and spectral band gaps in active matter.
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Active networks constitute an important class of non-
equilibrium systems spanning a wide range of scales, from
the intracellular cytoskeleton [1] and amoeboid organisms
[2–4] to macroscopic transport networks [5]. Identify-
ing generic self-organization principles [6,7] that control
the dynamics of these biological or artificial far-from-
equilibrium systems remains one of the foremost challenges
of modern statistical physics. Despite promising experi-
mental [3,8–10] and theoretical [1,4,11–13] advances over
the past decade, it is not well understood how the inter-
actions between local energy input, dissipation, and net-
work topology determine the coordinated global behaviors
of cells [8], plasmodia [3], or tissues [14]. Further progress
requires analytically tractable models that help clarify the
underlying nonequilibrium mode-selection principles [15].
We introduce here a generic model for active flows on a

network, motivated by recent experimental studies of
bacterial fluids [12,16] and ATP-driven microtubule sus-
pensions [17] in microfluidic channel systems. Building on
Rayleigh’s work [18] on driven vibrations and the Toner-Tu
model of flocking [19], the theory accounts for network
activity through a nonlinear friction [19–21]. We work in a
fully compressible framework allowing accumulated matter
at vertices to affect flow through network pressure gradients,
generalizing previous work on incompressible pseudoequi-
librium active flow networks [22,23], as suited to the many
biological systems exhibiting flexible network geometry [3]
or variations in the density of active components [7].
Although inherently nonlinear, the model can be system-
atically analyzed through perturbation theory. Such an
analysis shows how slow global dynamics emerge naturally
from the fast local dynamics, enabling the prediction of the
typical states in large noisy networks; these states have

significantly fewer active modes than for energy equiparti-
tion [24] in thermal equilibrium. More broadly, our model
provides an accessible framework for investigating generic
physical phenomena in active systems, including topologi-
cally protected soundmodes [7] and the influence of spectral
band gaps (Supplemental Material [25]).
We consider activity-driven mass flow on an arbitrarily

oriented graph G ¼ ðV; EÞ with V ¼ jVj vertices and E ¼
jEj edges. The elements of the V × E gradient (incidence)
matrix ∇ are ∇ve ¼ −1 if edge e is oriented outwards from
vertex v, ∇ve ¼ þ1 if e is oriented inwards into v, and
∇ve ¼ 0 otherwise. The dynamical state variables are the
deviations from the mean mass ϱ̄ ¼ M=V on the nodes,
(ϱ1ðtÞ;…; ϱVðtÞ), and the mass fluxes on the edges,
(ϕ1ðtÞ;…;ϕEðtÞ), governed by the nondimensionalized
(Supplemental Material [25]) transport equations
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where ξeðtÞ is standard Gaussian white noise. Equation (1a)
ensures mass conservation. The first term on the rhs of
Eq. (1a) represents the gradient of an ideal gas-type node
pressure pv ∝ ϱv, corresponding to the leading term in a
virial expansion; the second term is a Toner-Tu type
(Supplemental Material [25]) active friction force derived
from a depot model [20,27] with coupling ε > 0 and active-
passive control parameter μ, which drives the edge fluxes
ϕe towards preferred values � ffiffiffi

μ
p

when μ > 0. Many
networks have nonuniform edge and vertex weights, which

PRL 119, 028102 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending
14 JULY 2017

0031-9007=17=119(2)=028102(6) 028102-1 © 2017 American Physical Society

https://doi.org/10.1103/PhysRevLett.119.028102
https://doi.org/10.1103/PhysRevLett.119.028102
https://doi.org/10.1103/PhysRevLett.119.028102
https://doi.org/10.1103/PhysRevLett.119.028102


can be incorporated into equations of identical form to
Eqs. (1) with appropriate rescaling of ϱ, ϕ, and ∇
(Supplemental Material [25]).
Active flow networks described by Eqs. (1) exhibit rich

oscillatory transport behavior, including the mode selection
illustrated in Movie 1 and Fig. 1 for a hierarchically
weighted network with vertex degrees at most 3 as is
typical of Physarum polycephalum [28]. When this net-
work is initialized with zero pressure variation and flux, it
typically settles into a quasisteady state with a single
dominant oscillation frequency on the highest-weight path.
This is a manifestation of the fact that single-frequency
selection is the norm on actively driven path graphs, as we
shall show analytically below.
Generally, the features of the steady-state attractor will

be determined by the topology of the subgraph of high-
weight edges, which may be much sparser than the original
network. For this reason, as well as for ease of analysis and
illustration, we will henceforth assume G to be a tree, as
realized in certain peripheral sensory neurons [29], though

in general the full model in Eqs. (1) is not restricted to any
particular class of graph. The behaviors observed on trees
can be extended to denser graphs by choosing appropriate
edge weights.
The complex active flow dynamics encoded by Eqs. (1)

can be understood analytically by considering the basis of
oscillation modes of the network, as we illustrate now in the
fully deterministic case (D ¼ 0). To progress, we adopt a
Rayleigh [18] approximation εðμ − ϕ2

eÞϕe for the active
friction (Supplemental Material [25]). Now, expand the
pressure ϱv ¼

P
E
n¼1 rnðtÞϱvn and flux ϕe ¼

P
E
n¼1 fnðtÞϕen

in the right and left singular vectors ϱn ¼ ðϱvnÞ and ϕn ¼
ðϕenÞ of ∇⊤ corresponding to the E ¼ V − 1 nonzero
singular values λn. (On a tree, there is a single zero
eigenvalue of ∇∇⊤ yielding an additional right singular
vector for the pressure, but this corresponds to a constant
mass shift and so can be safely neglected.) Defining mode
amplitudes A2

n ¼ r2n þ f2n, the network energy then takes
the simple form H ¼ 1

2

P
nλ

2
nA2

n (Supplemental Material
[25]). When ε is small, there are two distinct time scales,
namely the fast oscillation time scale t and the slow friction
time scale τ ¼ εt, which we separate in the perturbation
ansatz rn ¼

P∞
σ¼0 ε

σrσn and fn ¼
P∞

σ¼0 ε
σfσn [30]. Active

friction does not contribute at the lowest order, so the
Oð1Þ contribution to each mode ðrn; fnÞ is an uncoupled
harmonic oscillator r0nðtÞ¼A0nðτÞcos½λnt−δnðτÞ� and
f0nðtÞ¼−A0nðτÞsin½λnt−δnðτÞ� with t-independent ampli-
tude A0n and phase δn (Supplemental Material [25]).
The influence of activity becomes apparent at first order

in ε, introducing couplings betweenmode amplitudeswhose
dynamics encode the state-selection behavior of the active
network. Requiring that the OðεÞ amplitudes r1n and f1n
remain small relative to the leading terms implies that the
secular (unbounded) terms in the first-order equations must
vanish [30]. Assuming negligible mode degeneracies, the
slow dynamics of the Oð1Þ mode amplitudes A0nðτÞ are
found to obey (Supplemental Material [25])

dðA2
0nÞ

dτ
¼
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where the overlap matrix Pnk ¼ 3
2
ð1 − 1

2
δnkÞ

P
eϕ

2
enϕ

2
ek

encodes the network topology. Fixed points of Eq. (2)
can then be found by choosing a subset of the A0n to be zero
and solving

P
E
k¼1 PnkA2

0k ¼ μ for A2
0n over the remaining

nonzero modes. If all the nonzero solutions for A2
0n are

positive, then there is a stationary point with those modes
activated (Supplemental Material [25]).
Activity-driven fixed points with exactly one mode

active always exist. If only mode p is active at leading
order, then A0n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
μ=Ppp

p
δnp is a fixed point of Eq. (2).

These amplitudes, which closely match both those calcu-
lated with the full unapproximated active friction force
and those from averages computed over fully nonlinear
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FIG. 1. Activity can select a single dominant oscillation mode
on hierarchically weighted networks. (a) The edges in the graph
simulated in (b) and (c) are given weights decreasing exponen-
tially with their distance from the central red path. (b) Oscillations
in pressure and flux develop primarily along the central high-
weight path (Movie 1). (c) Edge fluxes ϕe settle into steady
synchronized oscillations as exemplified for two edges indicated
in (b), one on (ϕ17) and one off (ϕ59) the path. (d) Plotting the
time-dependent amplitude of each analytically determined flow
eigenmode confirms the selection of a single oscillatory mode.
The ten modes with the highest average amplitude in this
simulation run are pictured; the marked top two rows are
oscillatory modes, while the remaining rows are cyclic modes.
See Fig. S6 for all modes. Simulation parameters were ε ¼ 0.1,
μ ¼ 1, and D ¼ 10−4.
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simulations (Supplemental Material [25]), show that as μ
crosses 0 there is a supercritical Hopf bifurcation with
A0n ∼

ffiffiffi
μ

p
. However, the stability of such a single-mode

state depends on topology: Our simulations suggest that
activity always selects exactly one oscillation mode in
simple path graphs, whereas single-mode states are typi-
cally unstable in networks with complex topologies. We
can use this observation to model more complex active
networks with single mode selection by appropriately
weighting the edges: If the edge weights for a path are
large enough compared to the weights elsewhere in the
network, the path behavior dominates (Fig. 1).
Insight into stability is provided by the case with up to

two modes active. Writing A0n ¼ A0pδnp þ A0qδnq, Eq. (2)
yields

dðA2
0pÞ=dτ ¼ ðμ − PppA2

0p − PpqA2
0qÞA2

0p; ð3Þ

and symmetrically for A2
0q. Depending on the topology-

encoding overlap coefficients Pnk, this gives up to four fixed
points: the zero state A0p¼A0q¼ 0, which is always linearly
unstable; the single-mode state ðA0p; A0qÞ ¼ ð ffiffiffiffiffiffiffiffiffiffiffiffiffi

μ=Ppp

p
; 0Þ,

which is stable if Ppq > Ppp and a saddle if not, plus
analogously for ð0; ffiffiffiffiffiffiffiffiffiffiffiffi

μ=Pqq
p Þ; and, potentially, a mixed state

ðA�
0p;A

�
0qÞ, where A�

0p¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μðPqq−PpqÞ=ðPppPqq−P2

pqÞ
q

with A�
0q defined symmetrically. When it exists, the mixed

state is either stable (if P2
pq < PppPqq) or a saddle (if

P2
pq > PppPqq), but if one of the single-mode states is stable

and one is unstable, then one ofA�
0p andA

�
0q is imaginary and

there is no mixed state. Hence, we have three possible

scenarios (Fig. 2): one stable single mode and the other a
saddle with no mixed state [Figs. 2(b) and 2(c), left]; two
stable single-mode states with a mixed saddle in between
[Figs. 2(b) and 2(c), center]; and two single-mode saddles
with a stable mixed state in between [Figs. 2(b) and 2(c),
right]. These predictions match simulations quantitatively
even for relatively large ε beyond the small-ε perturbation
regime (Fig. 2). In fact, simulations show the same qualitative
behavior for ε ¼ 2, suggesting the perturbation analysis
remains predictive at high activity.
This two-mode analysis yields a simple topological

heuristic for the stability of single-mode states. Since
jϕpj ¼ 1, Ppp is small when ϕp is spread over many edges
and large when ϕp is localized to a few edges. If ϕq is
localized to the same edges as ϕp, Ppq will also be large and
modepwill be stable to perturbations inmodeq. However, if
ϕq is localized to a disjoint set of edges, Ppq will be a scaled
inner product of near-orthogonal vectors ðϕ2

epÞ and ðϕ2
eqÞ and

will be small. Thus, localized modes will be unstable to
modes in other regions, while conversely if a mode is to be
stable alone, then it will be spread out across the entire
network. Therefore, a stable combination of modes will
possess significant flows on all edges of the network.
Biological systems exhibit vastly different macroscopic

and microscopic time scales [31–34]. This phenomenon is
present in our compressible active flow network, where
higher-order nonlinear effects induce slow global time
scales from faster small-scale dynamics. When the zeroth-
order amplitudes A0n are at a fixed point, the first-order
corrections r1n and f1n are harmonic oscillators with natural
frequency λn driven at linear combinations of the frequen-
cies active at zeroth order (Supplemental Material [25]). For
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FIG. 2. First-order perturbation theory accurately predicts the stable states on small trees. (a) A five-vertex tree possessing four
nontrivial modes, as illustrated. (b) On the tree in (a), mode amplitudes settle into one of two stable stationary states, as seen in
simulations for three different initial conditions. Modes are ordered by frequency from high (top) to low (bottom). (c) Simulated mode
trajectories (rainbow) in (b) match our analytic predictions (blue streamlines) in the subspaces of activated modes. There are three
possible arrangements of nonzero critical points in each 2D subspace: a saddle point on one axis and a stable node on the other axis (left),
a stable node on each axis and a saddle point in the middle (center), or a saddle point on each axis and a stable node in the middle (right;
Movie 2). Higher-order effects cause both the convergence to a point with A2 > 0 in the left and middle plots and the oscillations in the
trajectories. Parameters used are ε ¼ 0.5, μ ¼ 1, and D ¼ 0.
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instance, if two modes p and q are active at zeroth order, the
driving frequencies are 3λp − kðλp � λqÞ for k ¼ 0;…; 3.
This introduces new, slower time scales into the dynamics,
including oscillations in the energy H ¼ 1

2

P
nλ

2
nðr2n þ f2nÞ

with frequency λp − λq. Their magnitude depends on the
difference in frequency: Slower oscillations, driven by
modes with similar frequencies λp ≈ λq, have higher ampli-
tudes (Supplemental Material [25], Fig. S7).
The number of activated modes in an arbitrary com-

pressible active network depends on intricate interactions
between local activity and global flow configurations. The
total number of available modes is equal to the number of
edges E, meaning that, were each combination of modes to
be a fixed point, a tree could have up to 2E stationary states.
To see how the true number of stationary and stable states
depends on tree size, we performed an exhaustive numerical
fixed point search of Eq. (2) over a large sample of trees
with E ≤ 24 [Figs. 3(a)–3(d)]. The naive upper bound
of 2E suggests exponential growth of the mean number
of steady states with edges E; this is indeed what we see,
going as ∼ð2EÞ4=5. However, though still exponential in E,
the mean number of stable states is much smaller at
∼ð2EÞ1=4 [Fig. 3(a)]. Remarkably, these stable states have

only ∼E=4 modes active on average [Fig. 3(c)] in stark
contrast to the activation of all E modes under thermal
equipartition [24]. Pathlike topologies lead to even more
dramatic reductions in the number of modes active
[Fig. 3(c)], suggesting that a biological system can further
reduce the number of active modes through an optimal
choice of topology; moreover, hierarchically tuned edge
capacities as realized in Physarum [3,28] can further
enhance mode selection even in nontree topologies (Fig. 1).
Real active transport networks will have some nonzero

level of thermal or athermal noise [35]. Provided the noise
is not too large, it will render previously stable states now
only metastable, with flow patterns exhibiting small fluc-
tuations around these metastable states punctuated by
noise-driven stochastic transitions between them [22,35].
Long-time simulations of Eqs. (1) with D > 0 therefore
offer an independent numerical way to find stable fixed
points of the amplitude dynamics. We use vbFRET [36], a
variational Bayesian analysis of a continuous time hidden
Markov model, to identify states from simulated time
series. Almost all of the states discovered by vbFRET
match stable states predicted by Eq. (2) even in the presence
of non-negligible noise [Figs. 3(e)–3(g)], justifying the
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FIG. 3. States on larger trees possess surprisingly few active modes, which can be inferred from time series with nonzero noise. (a) The
mean number of stationary states of Eq. (2) grows exponentially with edges E as 1.77E ≈ ð2EÞ4=5 (solid orange line), close to the upper
bound of 2E states (dashed black line), while the mean number of stable states grows as 1.21E ≈ ð2EÞ1=4 (solid blue line). We counted
states on all nonisomorphic trees with E ≤ 14 edges (solid circles) and on a random sample of ∼175 trees per point for 15 ≤ E ≤ 24
(open circles). Averages are over trees with a fixed number of edges. (b) As E increases, both the mean and the variance of the
distribution of trees with each number of stable states increase rapidly. (c) Distribution of the average number of modes active in a stable
state. The mean over trees scales like 0.26E ≈ E=4 (solid line), significantly below E=2 expected if modes were selected randomly.
(d) Two example trees indicated in (a)–(c) by the corresponding colored symbols. Stable states on paths (×) always activate only one
mode; complex trees (þ) have more modes active. (e) Noisy networks (D > 0) transition stochastically between stable states,
exemplified by an amplitude-time trace for the tree shown. Modes are ordered by frequency from high (top) to low (bottom). Simulation
parameters are ε ¼ 0.5, μ ¼ 1, and D ¼ 5 × 10−3. (f) States found by vbFRET from simulations on the tree in (e) (Supplemental
Material [25]). The second, first, and fifth columns are states seen in (e), indicated by the colored bars above. (g) States predicted by
Eq. (2) for the tree in (e). The first five states in (f) match those in (g); the sixth column in (f) is likely a transient combination of
analytically stable states.
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simplifications used in deriving Eq. (2). This also promises
that Bayesian methods like vbFRET will function as
reliable inference tools for experimental data from real-
life active flow networks [3,10].
Beyond active density oscillations [12], the above

theoretical framework can be used to probe the effects
of topology on the physical properties of complex active
systems. For instance, it was recently shown that con-
tinuum Toner-Tu systems in finite lattice confinement
possess topologically protected edge-localized sound
modes [7]. Similar edge modes can be reproduced in our
coarse-grained model through a simplified network repre-
sentation of complex channel geometries (Supplemental
Material [25] and Movie 3). In addition, generalizing to
allow different effective weights at vertices opens up band
gaps, reflected in the excitation spectrum of spontaneous
activity modes (Supplemental Material [25]). As we focus
on phenomenological properties shared by many active
systems, akin to the Toner-Tu approach [19], the results and
techniques presented here promise insights into the mode-
selection mechanisms governing a wide range of non-
equilibrium transport and force networks.
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